LED Drivers

CC LINEAR LEDSET DIMMABLE

PRIMELINE LEDSET L-R 1 DALI

186564, 186565

Typical Applications

Built-in in compact luminaires for

- Office lighting
- Industry lighting

LED \bowtie set 1

Primeline LEDSet L-R1 DALI

- SELECTABLE OUTPUT CURRENT VIA LEDSET
- DIMMABLE: DALI (ED. 1) AND PUSH KEY
- VERY LOW RIPPLE CURRENT: < 1\%
- SUITABLE FOR EMERGENCY ESCAPE LIGHTING SYSTEMS ACC. TO EN 50172
- LONG SERVICE LIFE: UP TO 100,000 HRS.

PRODUCT GUARANTEE: 5 YEARS

PrimeLine
 LEDSet L-R1 DALI

Product features

- Linear casing shape

Functions

- The output current can be freely adjusted between 275 mA and 700 mA by using a resistor (according LEDSet standard).

Electrical features

- Mains voltage: $220-240 \mathrm{~V} \pm 10 \%$
- Mains frequency: $50-60 \mathrm{~Hz}$
- DC operation: 198-276 V, 0 Hz
- Push-in terminals: 0.2-1.5 mm²
- Power factor at full load 186564: > 0.98 186565: > 0.96
- Max. operation voltage (Uout): 250 V
- Secondary side switching of LED modules is not allowed.

Dimming

- Dimming function is realised by hybrid dimming. Analogue dimming: $\geq 275 \mathrm{~mA}$ PWM dimming: < 275 mA
- Dimming range: 3 to 100%
- If no dimming interface is connected, brightness will stay at 100%.

Safety features

- Protection against transient main peaks up to 1 kV (between L and N) and up to 2 kV (between L/N and PE)
- Electronic short-circuit protection
- Overload protection
- Overtemperature protection
- Protection against "no load" operation
- Degree of protection: IP20
- Protection class I

Packaging units

Ref. No.	Packaging unit Pieces per box		Boxes per pallet
186564	Weight g		
186565	20	48	265

Applied standards

- EN 61347-1

- EN 61347-2-13
- EN 61547
- EN 61000-3-2
- EN 62384

- EN 62386
- EN 55015

Dimming

Hybrid (analogue/PWM)

Dimensions

- Casing: M10
- Length: 359 mm
- Width: 30 mm

- Height: 21 mm

Product guarantee

- 5 years
- The conditions for the Product Guarantee

Current adjustment

LED \triangle set 1 of the Vossloh-Schwabe Group shall apply as published on our homepage
(www.vossloh-schwabe.com).
We will be happy to send you these conditions upon request.

Electrical characteristics

Max. output W	Type	Ref. No.	Voltage $50-60 \mathrm{~Hz}$ V	Mains current mA	Inrush current $\mathrm{A} / \mu \mathrm{s}$	Current output $\mathrm{DC*}$ $\mathrm{~mA}(\pm 5 \%)$	Voltage output $\mathrm{DC} \mathrm{(V)}$	THD at full load $\%(230 \mathrm{~V})$	Efficiency at full load $\%(230 \mathrm{~V})$	Ripple 100 Hz $\%$
42	ECXd 700.214	$\mathbf{1 8 6 5 6 5}$	$220-240$	$215-200$	$26 / 200$	$275-700$	$30-153$	<12.7	>91	<1
84	ECXd 700.213	$\mathbf{1 8 6 5 6 4}$	$220-240$	$410-380$	$32 / 240$	$275-700$	$00-220$	<5.4	>94	<1

* Factory setting for current output: 275 mA ; no resistor is necessary

Maximum ratings

Exceeding the maximum ratings can lead to reduction of service life or destruction of the drivers.

Ref. No.	Ambient temperature range ${ }^{\circ} \mathrm{C}$ min. $\quad{ }^{\circ} \mathrm{C}$ max.		Operation humidity range \% min. \% max.		Storage temperature range ${ }^{\circ} \mathrm{C}$ min. ${ }^{\circ} \mathrm{C}$ max.		Storage humidity range \% min. $\%$ max.		Max. operation temperature at tc point ${ }^{\circ} \mathrm{C}$	Degree of protection
186565	-25	+50	5	60	-40	+85	5	95	+60	IP20
186564									+75	

Expected service life time

at operation temperatures at tc point

Operation Ref. No. current 186565	186564			
All	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
hrs.	100,000	50,000	100,000	50,000

Product labels

	INPUT	∇ LIGHTING		$\begin{aligned} & \text { bait } \\ & \text { PuSH } \end{aligned}$	LED set $^{\text {d }}$	OUTPUT		
	UN=220...240 V \sim	SOLUTIONS				$\underline{1 r o e d ~(m A)}$	75.700 mA	
	= $410 \ldots 380 \mathrm{~mA}$	Sole				\bigcirc	60..220 V	
- PUSH	f $\mathrm{N}=50.060 \mathrm{~Hz}$	Dimmable and current selectable				Proted (W)	$42 . .84 \mathrm{~W}$ 25	
- da ${ }_{\text {d }}$	- $=0,97$	Type ECXd 700.213				10 (10)	25...50	
- da ${ }^{\text {dad }}$	Range ofoplicat	${ }_{\text {Ref. }}^{\text {Rode in }}$ Serbia (Europe)	㐌10000	c.0911	Non isolated	U. (M)	<250	

Typ. performance graphs for 186565 / Type ECXd 700.214

Typ. performance graphs for 186564 / Type ECXd 700.213

The values contained in this data sheet can change due to technical innovations. Any such changes will be made without separate notification.

Vossloh-Schwabe Deutschland GmbH Hohe Steinert 8 . 58509 Lüdenscheid. Germany . Phone +4923 51/10 10 Fax +49 23 51/10 12 17. www.vossloh-schwabe.com

Safety functions

- Transient mains peaks protection:

Values are in compliance with EN 61547
(interference immunity).
Surges between L-N: up to 1 kV
Surges between L/N-PE: up to 2 kV
Short-circuit protection: The control gear is protected against permanent short-circuit with automatic restart function.

- Overload protection: The control gear only works in range of rated output power and voltage problemfree. Please check before switch-on mains power supply that the selected LED load is suitable (see Electrical Characteristics on data sheet).
- Overheating: The control gear has overheating protection acc. to IEC 61347-1 C 5e. In case of overheating the control gear will shut down. For restart switch of the mains for 1 min. and start again.
In case of overheating the control gear will dimm down and if necessary shut down.
After cooling the operating device will start again and dimm automatically to the last dimm level.
- No load operation: The control gear is protected against no load operation (open load).
- If any of the above mentioned safety functions will be triggered, disconnect the control gear from the power supply then find and eliminate the cause of the problem.

Dimming

- Down to 275 mA the dimming is realized by amplitude dimming (see graphic). For dimming $<275 \mathrm{~mA}$ a PWM method at 2 kHz is used. IEEE 1789-15 will be observed.
- Max. dimming speed: 0.075 seconds
- Dimming curve is adapted to the eye sensitiveness.

PUSH function characteristic

- Just one key for dimming and ON/OFF
- Polarity- and phase-independent control
- Control input with large working voltage range
- Suitable for multi-layer control
- Fully DC-compatible - no functional restrictions during DC operation
- After disconnection from the primary voltage the ballast will reproduce the last stored lighting level
- Soft start
- Automatic recognition of DALL and PUSH signals

PUSH operating voltage ranges during control signal input

LED driver type	ECXd $700.213, \mathrm{ECXd} 700.214$	All other DALL/PUSH ballasts
AC	$220-240 \mathrm{~V} \pm 10 \%$	$10-230 \mathrm{~V}$
DC	$198-264 \mathrm{~V}$	-
	Failing to observe these working voltage ranges can lead to non-recognition of the signals; exceeding the maximum voltages can lead to the destruction of the data inputs.	

PUSH control signals (key activation)

Short push	(80 ms < t < 460 ms)	($0 \mathrm{~ms}<\mathrm{t}$ < 500 ms)
	Is used to switch between ON/OFF lighting states. After the device is switched on, the last selected lighting level is restored and the next dimming direction will be upwards.	
Long push	($460 \mathrm{~ms}<\mathrm{t}<10 \mathrm{~s}$)	($500 \mathrm{~ms}<\dagger$ < ∞)
	Is used to dim upwards or downwards; a long push will change the dimming direction. Thus, a long push will reverse the dimming direction until the upper or lower limit is reached. If the light was off, a long push will switch it on and the dimmer will start at the lowest light intensity.	
Push to synchronise	($+>10 \mathrm{~s}$)	long - short - long
	Light is dimmed to the preset factory level and the next dimming direction will be upwards.	Starting situation: luminaires are switched off. The "long - short - long" combination first switches the lamp on, then off and finally on again, after which it gets gradually brighter. The EBs will be synchronised again after this procedure.
Synchronisation	Any 1-key dimmer that does not feature a central control module (as each ballast will have its own controls) can develop asynchronous behaviour (e.g. children might play with the key). The system will then be out of sync, i.e. some lamps will be on, others off or the dimming direction will differ from lamp to lamp.	
	Two methods of synchronisation can be used: - Push the key for more than 10 seconds, after which the light will be dimmed to a preset level and the next dimming direction will be upwards. - Start with a long push of the key so that all lamps are switched on. Follow with a short push to turn the system off. The system will now be resynchronised.	

The values contained in this data sheet can change due to technical innovations. Any such changes will be made without separate notification.

Assembly and Safety Information

Installation must be carried out under observation of the relevant regulations and standards. Installation must be carried out in a voltage-free state (i.e. disconnection from the mains). The following advices must be observed; non-observance can result in the destruction of the LED drivers, fire and/or other hazards.

Mandatory regulations

- DIN VDE 0100
- EN 60598-1

Mechanical mounting

- Mounting position: Built-in: Any position inside a luminaire is allowed
Independent application: Drivers are not allowed to use for independent applications
- Mounting location: LED drivers are designed for integration into luminaires or comparable devices. Installation in outdoor luminaires: degree of protection for luminaire with water protection rate ≥ 4 (e.g. IP54 required).
- Degree of protection: IP20
- Clearance:

Min. 0.10 m from walls. ceilings and insulation

- Surface
- Heat transfer:
- Fastening:

Solid and plane surface for optimum heat dissipation required.
If the driver is destined for installation in a luminaire. sufficient heat transfer must be ensured between the driver and the luminaire casing.
LED drivers should be mounted with the greatest possible clearance to heat sources. During operation. the temperature measure at the driver's tc point must not exceed the specified maximum value.

- Tightening torque: 0.2 Nm

Electrical installation

- Connection
terminals:
- Stripped length:
- Wiring:
- Secondary load

Wiring diagram:

The sum of forward voltages of LED loads is within the tolerances which are mentioned in the Electrical Characteristics on the data sheet.

LEDSet, DALI

LEDSet, PUSH

Selection of automatic cut-outs for VS LED drivers

- Dimensioning automatic cut-outs High transient currents occur when an LED driver is switched on because the capacitors have to load. Ignition of LED modules occurs almost simultaneously. This also causes a simultaneous high demand for power. These high currents when the system is switched on put a strain on the automatic conductor cutouts. which must be selected and dimensioned to suit.
- Release reaction

The release reaction of the automatic conductor cut-outs comply with VDE 0641. part 11. for B. C characteristics. The values shown in the following tables are for guidance purposes only and are subject to system-dependent change.

- No. of LED drivers

The maximum number of VS LED drivers applies to cases where the devices are switched on simultaneously. Specifications apply to single-pole fuses. The number of permissible drivers must be reduced by 20% for multi-pole fuses. The considered circuit impedance equals $400 \mathrm{~m} \Omega$ (approx. 20 m [2.5 mm²] of conductor from the power supply to the distributor and a further 15 m to the luminaire).

Type	Ref. No.	Automatic cut-out type and possible no. of VS drivers pcs.		
Automatic cut-out type B	B 10 A	B 13 A	B 16 A	
ECXd 700.213	$\mathbf{1 8 6 5 6 4}$	10	13	16
ECXd 700.214	$\mathbf{1 8 6 5 6 5}$	15	20	25
Automatic cut-out type C	C 10 A	C 13 A	C 16 A	
ECXd 700.213	$\mathbf{1 8 6 5 6 4}$	17	22	28
ECXd 700.214	$\mathbf{1 8 6 5 6 5}$	26	34	41

- To limit capacitive inrush currents the current carrying capacity of each circuit breaker (fuse) can be increased by a factor of 2.5 with the help of our ESB (Ref. No.: 149820, 149821, 149822) inrush current limiters.

Choice of LEDSet Resistor

Output current selection:

- The output current can be adapted within the rated output current range
- between 275 and 700 mA .
- To change the preset output current it is necessary to use the correct LEDSet resistor. Values for different currents are figured out in the table below.
- The LEDSet resistor should have a maximum tolerance of 1%.
- Please refer to the electrical values and the operating window to see which combinations are possible.
- Output current / needed LEDSet resistor can be calculated as follows:
lout $=5 \mathrm{~V} /$ Rset $\times 1000$
$\mathbf{R}_{\text {set }}=5 \mathrm{~V} /$ Iout $\times 1000$
- If no LEDSet resistor is mounted (delivery condition) output current is less than nominal ($I_{\text {min. }}$)
- If LEDSet interface is short circuit output current is limitied to Imax.

Resistors		ECXd 700.213				ECXd 700.214			
Nominal current Irated mA	Resistor R $\mathrm{k} \Omega$	LED ou ULED V min.	ge V max.	LED nom Prated W min.	put W max	LED out	ge V max	LED no Prated W min	put W max
275	18.18	153	220	42.1	60.5	76	153	20.9	42.1
300	16.67	140	220	42.0	66.0	70	140	21.0	42.0
325	15.38	129	220	41.9	71.5	64	129	20.8	41.9
350	14.29	120	220	42.0	77.0	60	120	21.0	42.0
375	13.33	112	220	42.0	82.5	56	112	21.0	42.0
400	12.50	105	210	42.0	84.0	52	105	20.8	42.0
425	11.76	98	197	41.7	83.7	49	99	20.8	42.1
450	11.11	93	186	41.9	83.7	46	93	20.7	41.9
475	10.53	88	176	41.8	83.6	44	88	20.9	41.8
500	10.00	84	168	42.0	84.0	42	84	21.0	42.0
525	9.52	80	160	42.0	84.0	40	80	21.0	42.0
550	9.09	76	152	41.8	83.6	38	76	20.9	41.8
575	8.70	73	146	42.0	84.0	36	73	20.7	42.0
600	8.33	70	140	42.0	84.0	35	70	21.0	42.0
625	8.00	67	134	41.9	83.8	33	67	20.6	41.9
650	7.69	64	129	41.6	83.9	32	65	20.8	42.3
675	7.41	62	124	41.9	83.7	31	62	20.9	41.9
700	7.14	60	120	42.0	84.0	30	60	21.0	42.0

Vossloh-Schwabe Deutschland GmbH • Hohe Steinert 8 . 58509 Lüdenscheid. Germany Phone +49 23 51/10 10. Fax +49 23 51/10 12 17 . www.vossloh-schwabe.com

